CH 16101

COURSE OBJECTIVES

- To know the need of polymers for industrial application.
- To understand the interrelation of heat and work within the confines of the laws of thermodynamics.
- To understand the basic concepts of instrumentation, data acquisition, data processing and the principles of analytical techniques and their applications.
- To predict the number of stable phases that may exist in equilibrium for a particular system.
- To acquaint the students with the basics of Nano materials, their properties and applications.

UNIT I POLYMERS

Introduction: Classification of polymers – Natural and Synthetic- Functionality – Degree of polymerization: Types of polymerization and Mechanism of Addition (Free Radical, cationic and anionic); condensation and copolymerization. Effect of polymer structure and properties of polymers strength, plastic deformation, physical state and chemical resistance. Plastics-Thermoplastics and Thermosetting plastics -Preparation, properties and uses of Nylon 6:6, Teflon, epoxy resin and polycarbonate (Lexan)-Compounding of Plastics-Constituents and functions -Fabrication methods of Plastics.

UNIT II CHEMICAL THERMODYNAMICS

Terminology of thermodynamics-First law- Second law: Entropy- Entropy change for an ideal gas, reversible and irreversible process; Entropy of Phase transistion: Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions(problems); Criteria of spontaneity: Gibbs Helmholtz Equation(problems); ClausiusClapeyron equation ; Maxwell Relations- Vant Hoff Isotherm and Isochore (problems).

UNIT III WATER TECHNOLOGY AND SPECTROSCOPIC TECHNIQUES

Water quality standards-Hardness of water-Types-expression-units-CaCO₃equivalence-problems and disadvantages- Water quality parameters and their determination methods-Titremetry,ElectroUV and AAS-Spectroscopy -Types- Electromagnetic spectrum – Absorption of radiation – Beer-Lambert's law – UV-Visible spectroscopy and IR spectroscopy – principles and instrumentation (block diagram only Electronic, Vibrational and rotational trasitions. Estimation of iron by colorimetry – flame photometry principles and instrumentation (block diagram only) - estimation of sodium by flame photometry –

9

9

9

UNIT IV PHASE RULE AND ALLOYS

Phase rule: Introduction, and explanation of terms with examples, One Component System: Water System-Reduced phase rule- Two Component Systems- Lead- Silver system, Zinc – Magnesium system. Alloys: Introduction – Definition – properties of Alloys- significance of alloying. Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless Steel- Heat treatment of steel: Non Ferrous alloys; Brass and Bronze.

UNIT V NANOCHEMISTRY

Basics-distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoscale materials- particles: cluster, rods, tubes(CNT) and wires. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrode deposition, chemical vapour deposition, laser ablation; Properties and applications in electronics and communication, Energy sciences and risk discussion and future perspectives.

TOTAL : 45 PERIODS

COURSE OUTCOMES

- To select a polymeric material for a specific engineering application.
- To know the basic concepts of internal energy, enthalpy, entropy, free energy and chemical potential.
- To gain practical experience with chemical process equipment as well as to analyze and interpret data.
- To classify the states in a equilibrium in a heterogeneous system. To become familiar with the types, the heat treatment and properties of alloys .
- To identify the particle size, and the application of Nanomaterials in various fields .

TEXT BOOKS

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", 15th ed., DhanpatRaiPub.Co, New Delhi, (2012).
- 2. S.S.Dara, "A Text book of Engineering Chemistry", S.Chand&Co.Ltd., New Delhi, (2009).

REFERENCE BOOKS

- 1. B. Sivasankar, "Engineering Chemistry", Tata McGraw-Hill Pub. Co. Ltd., New Delhi (2008).
- 2. R.Sivakumar and N.Sivakuamr, "Engineering Chemistry", Tata McGraw-Hill publishing company limited, New Delhi, (2009)

9

- 3. B.K. Sharma, "Engineering Chemistry", Krishna Prakasam Media (P) Ltd., Meerut (2001).
- Bahl B.S., Tuli G.D. and ArunBahl., Essential of Physical Chemistry, S.Chand& Co. Ltd., New Delhi. (2010).
- 5. Geofrey A ozin, Andre Arsonault and Ludovicacademariti. "A chemical approach to nanomaterials", Chemistry for Royal society Revised edition London, (2009).

	Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
COs		Programmes Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	-	-	1	2	-	2	-	-	1	-	-	
CO2	-	-	2	-	-	1	-	-	-	-	1	1	-	-	
CO3	2	-	2	2	-	1	-	-	-	-	1	2	-	-	
CO4	2	-	2	-	-	1	2	-	-	-	1	1	-	-	
CO5	-	1	-	-	-	1	2	-	2	-	1	-	-	-	

COURSE OBJECTIVES

To enable students

- introduce electric circuits and its analysis
- impart knowledge on solving circuits using network theorems ٠
- introduce the phenomenon of resonance in coupled circuits.
- educate on obtaining the transient response of circuits. ٠
- know the concepts of duality ٠

BASIC CIRCUITS ANALYSIS UNIT I

Ohm's Law - Kirchhoff's laws - DC and AC Circuits - Resistors in series and parallel circuits - Mesh current and node voltage method of analysis for D.C and A.C. circuits – Phasor Diagram – Power, Power Factor and Energy.

NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC 9 **UNIT II** CIRCUITS

Network reduction: voltage and current division, source transformation - star delta conversion -Thevenin and Norton Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

RESONANCE AND COUPLED CIRCUITS UNIT III

Series and parallel resonance - their frequency response - Quality factor and Bandwidth - Self and mutual inductance - Coefficient of coupling - Tuned circuits - Single tuned circuits - Double tuned circuits 9 **UNIT IV** TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC, RLCcircuits using Laplace transform for DC input and A.C. with sinusoidal input

- Characterization of two port networks in terms of Z, Y, h and ABCD parameters.

UNIT V CONCEPTS OF DUALITY

Concept of duality, Dual network, Graphs of a network, Trees, twig, link and branches, Incidence matrix, Tieset matrix and cutset matrix of a graph, Inverse networks and equalizers - Applications.

TOTAL PERIODS 45

COURSE OUTCOMES

Upon the completion of the course, students will be able

- Analyze electrical circuits
- Apply circuit theorems ٠
- Analyze AC and DC Circuits
- Design resonance circuits ٠
- Understand the concepts of Duality

Q

9

9

TEXT BOOKS

- Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.
- 2. Joseph A. Edminister, MahmoodNahri, "Electric circuits", Schaum's series, Tata McGraw-Hill,New Delhi, 2001.

REFERENCES

- M Russell, Mersereau and Joel R. Jackson, "Circuit Analysis- A System Approach", Pearson Education, 2007.
- 2. Chakrabati A, "Circuits Theory (Analysis and synthesis)", DhanpathRai& Sons, New Delhi, 1999.
- Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2003.
- 4. Robert L. Boylestad, "Experiments in Circuit Analysis to Accompany Introductory Circuit Analysis", Prentice Hall, 2000.

WEB LINKS

- 1. http://www.electronics-tutorials.ws/
- 2. www.electrical 4u.com
- 3. http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/esc102/index.html
- 4. http://www.tina.com/1200_problems_and_examples
- 5. www.circuits-magic.com

	Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-strong, 2-Medium, 1-Weak														
COs	Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	-	-	-	1	1	-	2	2	1	
CO2	3	3	3	3	3	-	-	-	1	1	-	2	2	1	
CO3	3	3	3	3	3	-	-	-	1	1	-	2	2	1	
CO4	3	3	3	3	3	-	-	-	1	1	-	2	2	1	
CO5	3	3	3	3	3	-	-	-	1	1	-	2	2	1	

COURSE OBJECTIVES:

To enable the students to

- Estimation and quantification of biomolecules.
- Separation of macromolecules.
- Estimation and interpretation of biochemical parameter.
- Understand the basics knowledge of Biochemical parameter and their interpretation in Blood sample.

LIST OF EXPERIMENTS:

- 1. General guidelines for working and functional component of biochemistry lab
- 2. Preparation of solutions: 1) percentage solutions, 2) molar solutions, 3) normal solutions
- 3. Standardization of pH meter, preparation of buffers, emulsions.
- 4. Spectroscopy: Determination of absorption maxima (λ max) of a given solution
- 5. General tests for carbohydrates, proteins and lipids.
- 6. Identification of Blood Collection Tubes and Phlebotomy equipments
- 7. Preparation of serum and plasma from blood.
- 8. Estimation of Haemoglobin 1. Estimation of blood glucose.
- 9. Estimation of creatinine.
- 10. Estimation of urea.
- 11. Estimation of Uric acid
- 12. Estimation of cholesterol 14. Assay of SGOT/SGPT.
- 13. ELISA test
- 14. Separation of proteins by SDS electrophoresis(Demo)
- 15. Separation of amino acids by thin layer chromatography (Demo).

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon completion of the course, students will be able to:

- Understand the Biochemistry laboratory functional components
- Understand the basics principle of preparation of buffers.
- Have a sound knowledge of qualitative test of different biomolecules.
- Understand the basics knowledge of Biochemical parameter and their interpretation in Blood sample.

CO-PO Mapping:

Course Outcomes (CO's)	Mapping of course objectives with PO's and PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
	Programme Outcomes (PO's)													Programme Specific Outcomes (PSO's)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	2	2	2				1			1	2	3
CO 2	2	2	2	2	2				1			1	2	3
CO 3	2	2	2	2	2				1			1	2	3
CO 4	2	2	2	2	2				1			1	2	3

COLLE EDARD OF STUDIES Biomedical Engineering