8

8

\$

\$

\$

#

8

8

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

AUDIT CONDUCTED FOR

PAAVAI ENGINEERING COLLEGE

(Autonomous Institution)

Paavai Nagar, NH-44, Pachal - 637 018, Namakkal (Dt), Tamilnadu.

DATE OF AUDIT

03 JUNE 2024

(Audited and accounted from June 2023 to May 2024)

<u>AUDIT CONDUCTED BY</u>

RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING

(An ISO 9001: 2025 Certified Company & Registered Under MSME, GoI) Mobile: +91- 80567 19372, 99420 14544 (Whatsapp) E-mail: <u>ramkalamcect@gmail.com</u>

Chapter								
No.	Description	No.						
1.	Acknowledgement	3						
2.	Introduction to Energy-Environment-Green Audit Process	5						
3.	Executive Summary							
	PART-A: ENERGY AUDIT REPORT							
4.	Study on Energy Consumption Pattern	12						
5.	5. En ergy Con servation Proposals (ENCONS)							
	PART-B: ENVIRONMENTAL AUDIT REPORT							
6	Estimation of CO ₂ Emission and Neutralization							
0.	(Electricity, Wood, LPG, Diesel & Mature Trees)							
7.	. Transport System							
0	Usage of Chemicals, Salts & Acids	24						
0.	(Storage, Handling, & Best Operating Practices)	54						
	PART-C: GREEN AUDIT REPORT							
9.	Water Utilization, Conservation & Water Management	38						
10.	Waste Handling & Management	46						
11.	Assessment on Mature Trees & Bio-Diversity	52						
12.	Audit Summary & Conclusion	58						
Annexure	exure Authorised Certificates of Auditor							

TABLE OF CONTENT

1. ACKNOWLEDGEMENT

<u>ACKNOWLEDGEMENT</u>

RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING, Coimbatore – 641 062 is thankful to the Management, Principal, Faculty and Technical team members of M/s. PAAVAI ENGINEERING COLLEGE (Autonomous), Paavai Nagar, NH-44, Pachal -637 018, Namakkal (Dt), Tamilnadu for providing an opportunity to conduct a detailed Energy, Environment and Green Audit process in the college premises.

It is our great pleasure which must be recorded here that the Management of **M/s. PAAVAI ENGINEERING COLLEGE (Autonomous)** extended all possible support and assistance resulting in thorough completion of the audit process. The audit team appreciates the cooperation and guidance extended during the course of site visit and measurements. We are also thankful to all those who gave us the necessary inputs and information to carry out this very vital exercise.

Finally, we offer our sincere thanks to all the members in the engineering division/ technical / non-technical divisions and office members who were directly and indirectly involved with us during collection of data and while conducting field measurements.

<u>Management Team Members</u>						
Shri. N.V. NATARAJAN, B.Com., FCA	Chairman					
Dr. M. PREMKUMAR	Principal					

<u>Audit Team Members</u>					
	BEE Certified Energy Auditor (EA-27299)				
Dr. S.R. SIVARASU, Ph.D.,	Lead Auditor-ISO-14001:2015 (EMS),				
	IGBC AP, GRIHA CP, CII CP in SWM				
	Carbon Footprint Auditor & Implementer				
	Mobile: +91- 80567 19372, 99420 29372				
Er. P. MALLIGARJUN, M.E.,	Director (Technical)				

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

2. INTRODUCTION

TO

ENERGY-ENVIRONMENT-GREEN AUDIT PROCESS

2.1: Preface about the Institution:

- The vision of our Chairman, Shri CA N.V. Natarajan, started with the founding of the 'Paavai Varam Educational Trust' in 1997. The trust aims to offer quality education to underprivileged youth, especially from rural and remote areas around Rasipuram, a small town in Tamil Nadu known for its historical significance and products like pure ghee, sago and silk.
- Paavai Engineering College started in the year 2001, offering UG programmes and PG programmes has been approved by AICTE, NAAC and accredited by NBA. The college is securing top ranks consistently among the leading engineering colleges in Coimbatore region.
- The departments of Engineering and Management Studies are recognized as approved research Centre's by Anna University Chennai to offer Ph.D. programmes. It has obtained research grants from AICTE, TNSCST and other funding agencies. The college has been organizing Seminars, Workshops, FDP and Conferences periodically in the state-of-the-art technologies. The institution has signed **MoUs** with leading MNCs like **Infosys, Microsoft, Wipro and also Spoken Tutorial of IIT Bombay** resource Centre.
- The College is located in Namakkal, just 7 km from the nearest railway station and right on NH-44 and is easily accessible by road and rail. It is situated on a 10.29 acres campus that is clean, green and serene.

<u> 2.2: Vision:</u>

 To strive to be a globally model Institution all set for taking 'lead-role' in grooming the younger generation socially responsible and professionally competent to face the challenges ahead.

2.3: Mission:

- To provide goal- oriented, quality based and value added education through state of the art technology on a par with international standards.
- To promote nation building activities in science, technology, humanities and management through research
- To create and sustain a community of learning that sticks on to social, ethical, ecological, cultural and economic upliftment.

2.4: Quality Policy:

Paavai Institutions strives to be recognised as a centre of excellence for learning in Engineering, Technology and Management. To achieve this we are committed to:

- Continuously improving the quality of education and maintaining the institution as an effective human resource development organization under all changing environment.
- \oplus Pursuing Global standards of excellence in all our endeavours namely teaching, research and consultancy.
- Contributing to the nation and beyond, through the state-of-the-art technology, by producing vibrant technocrats, outstanding engineers and excellent managers who are ever willing to work to the spirit of challenge and innovation with high ethical and professional standards.

2.5: Scope of the Audit Process:

- **Energy Audit:** To conduct a detailed energy audit in the college campus with a main focus to identify judicious usage of electrical and thermal energy (where, when, why and how energy is being utilized).
- **Environmental Audit:** Identification of history of activities, present environmental practices followed, monitoring records and known sources of environmental issues inside the college.
- **Green Audit:** Assessment on Campus greenery in terms of mature trees, flowering shrubs, bushes, medicinal plants, adoption of green energy generation and utilization, reduction of CO₂ due to green energy system and identification of possible implementation and enhancement of current greenery practices.

2.6: Outcomes of the Audit Process:

- Recommendations based on field measurement with achievable **En**ergy **Con**servation (ENCON) proposals under **No cost/Low cost and Cost investment categories**
- Minimization of present energy cost by adjusting and optimizing energy usage and reduction of energy wastage without affecting the regular activities
- Identification of possible cost and energy saving from energy conservation, waste reduction, reuse and recycling
- Formation of methodology for long term road map for maintaining green environment within the campus and encourage the stakeholders for continuous improvements

2.7: Audit Approach:

The audit team completed the assessment of energy consumption in the factory premises and operating hours of each machine (system) using two approaches namely **i) Objective Approach** in which a detailed measurement was taken and **ii) Subjective Approach** in which field data is collected from the maintenance department.

2.8: Coverage in Energy- Environment & Green Audit Process:

<u>EXECUTIVE SUMMARY</u>

<u>Energy Analysis:</u>

- → A detailed audit was conducted M/s. PAAVAI ENGINEERING COLLEGE (Autonomous), Paavai Nagar, NH-44, Pachal 637 018, Namakkal (Dt), Tamilnadu.
- → The audit team has come out with <u>10 Energy Conservation Proposals (ENCONs)</u> and the summary of all the ENCONs are given below:

S.	Description	Parameters					
No.	Description	Present	After	Savings			
1.	Annual Energy Consumption	3,88,211 kWh + 95,589 kg LPG + 570 Ton Wood	3,54,708 kWh + 89,490 kg LPG + 532.7 Ton Wood	33,503 kWh + 6,099 kg LPG + 37.3 Tons Wood			
2.	Annual Financial Cost	Rs.194.8 Lakhs	Rs. 181.2 Lakhs	Rs. 13.6 Lakhs			
3.	Initial Investment		Rs. 11.0 Lakhs				
4.	Payback Period	Nearly	v 0.81 Years (9.7 N	lonths)			
5.	Overall Energy Reduction	8.6 % Electricity + 6.4 % LPG + 6.5 % Wood					
6.	Annual Financial Savings	Nearly 7.	.0 % of annual fina	ancial cost			

Note:

- Apart from the Energy Conservation, the audit team proposes *many technical recommendations* focusing on energy, equipment's life improvement, safety and best operating practices.
- All types of energy carriers (like **Electricity, Wood & LPG**) used for regular applications are considered for this audit process.

Audit Conducted & Verified by

3.R. 5'

(Dr. S.R. SIVARASU)

Dr. S.R. SIVARASU, Ph.D., BEE Certified Energy Auditor (EA-27299) Lead Auditor - ISO 14001: EMS IGBC - AP, GRIHA - CP Mobile: 80567 19372, 99420 29372 E-Mail: ramkalamcect@gmail.com

Table-1: Energy Conservation	Proposal	(ENCON)	along with Annual	Energy and Financia	l Savings
		· /	0		

s		% Saving &	Estimated	l Savings	Initial	Pawhack				
No	Proposed Energy Conservation Measures	70 Saving &	Annual Energy	Monetary	Investment	Pariod	Page No.			
110.	No. Source		Savings	Savings (Rs.)	(Rs.)	renou				
	ENCONs Savings through Electrical Energy									
1	Increasing the Energy Production from the Roof Top Solar	2 % on Solar	119 kWh	1 4 2 8	Zero Cost	Immediate	17			
1.	Photovoltaic System using regular Panel Cleaning Schedule	PV System	117 KWII	1,120	2010 0050	mineulate	17			
2	Reduction of Cable Losses and Active Power Consumption	2 % on	7 764 kWh	93 168	20.000	0.21 Years	19			
2.	using Capacitor Compensation	Electrical	<i>,,,</i> 01 KWH	55,100	20,000	0.21 10015	17			
3.	Reduction of Mechanical Transmission Losses in the STP	8 % on STP	6.720 kWh	80.640	30.000	0.37 Years	21			
0.	Aerator Blower Motor	Blower Motor	0,7 20 1111	00,010						
	Reduction of Energy Consumption through retrofitting a	20 % on STP								
4.	Common Variable Frequency Drive (VFD) in the STP Aerator	Blower Motor	8,400 kWh	1,00,800	1,00,000	1.00 Years	23			
	Blower Motor									
5.	Replacement of Existing Convention Ceiling Fans into EC BLDC	50 % on Fans	10,500 kWh	1,26,000	1,80,000	1.43 Years	25			
	Fans	Load								
	ENCONs Savin	gs through LPG I	hermal Energy							
6.	Reduction of LPG Consumption using Burner Cleaning and	2 % of LPG for	765 kg	80.325	20.000	0.25 Years	27			
	Swapping of Active Burners.	Stoves		,	,					
7.	Reduction of LPG Consumption by converting the conventional	Technology	1.510 kg	1.58.550	1.50.000	0.95 Years	29			
<i>.</i>	Vapour Off-Take (VOT) system in to Liquid Off-Take System	Substitution	1,010 10	1,00,000	1,00,000		_ >			
8.	Reduction of LPG Consumption in Dosa making Stove by	10 % of LPG	3.824 kg	4.01.520	2.00.000	0.50 Years	31			
0.	replacing the Conventional Burner with Radiant Burners	10 /0 01 Li U	0,02116	1,01,010						

S		% S		Saving & Estimated S		Initial	Pavback		
No.	Proposed Energy Con	servation Measures	Source	Annual Energy	Monetary	Investment	Period	Page No.	
NO.			Source	Savings	Savings (Rs.)	(Rs.)	I enou		
	ENCONs Savings through Wood Thermal Energy								
9	Reduction of LPG Consumption in Boiler Feed Water Pre-		Technology	8.8 Tons	73 920	2 00 000	2 71 Vears	33	
9.	9. heating using Solar Thermal Energy System			0.0 10115	73,920	2,00,000	2.71 icais	33	
10	Reduction of Heat Energy in th	1e Boiler Outer Side + Steam	5 % Wood on	24.9 Tong	2 00 220	60.000	0.20 Voors	25	
10.	10. Pipes Lines using TCC		Boiler	24.8 10115	2,08,320	60,000	0.30 Tears	33	
Total 33,503 kWh + 6,099 kg LPG + 37.3 Tons Wood						11,00,000			
	Renewable Energy Proposal on "Solar Based Energy Generation: Installation of Roof Top Solar Photovoltaic Power Plant (SPP)								
	and Reduction in the Energy Billing"								

Recommendations and Best Operating Practices:

- \oplus All SSB must be fitted with digital energy meters.
- ⊕ Prepare block wise maintenance checklist of electrical and thermal system
- ① Calculate the Unit Per Litre (UPL) for every run of DG and average it for monthly
- ① Convert the existing conventional lightings and fans into energy efficient lights and fans
- Earth pits must be visible for easy access, should be done regular maintenance and measure their values annually
- Similar to Fan, now BLDC based ACs are made available in the market; which consumes less amount of energy (Power) during its starting and running condition.
- \oplus It is essential and the right time to form an **Energy Management Team**

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-A: ENERGY AUDIT REPORT

4. STUDY ON ENERGY CONSUMPTION PATTERN

4.1: Assessment of Existing Electrical and Thermal Energy Systems:

S. No.		Descrip	tion	Details					
	1			Electrical	Energy	Usage			
1.	Name	e of the cu	ıstomer		PAAVAI	I ENGINEERING COLLEGE (Autonomous)			
2.	2. Communication Address				Paa	vai Nagar, Nl	H-44, Pac	chal - 637 018,	
	Sonui	aa Numb	on Tuno of	SC No. 0	4 215 0		(Dt), Tar	minadu.	0.0.110 LAA
3.	3. Supply & Tariff			SC NO: 0	Privat	e Educationa	l Institut	ions and Hoste	s 2; 112 kw
4.	Ener	gy Suppli	ers		Ke	rala State Ele	ectricity E	Board Limited	
5.	Gene	rator Det	ails	250 125	kva – kva (Cummins – Cummins ((Inbuil Inbuilt	t fuel tank – fuel tank – 2	300 L) 200 L)
6.	DG O	peration				Manua	l Opera	ition	
Annual Electrical Energy Consumption, Electricity Consumption from DG &						&			
Diesel Consumption									
Electr	icity	3,88,2	11 kWh	Diesel for D	G 6	3,588 Litres	Units	Generated	27,482 kWh
	Unit per Litre for the DG: Nearly 3.2 kWh/Litre								
	Thermal Energy Used								
	Liqui	fied Petr	oleum Gas (LPG)				Cooking	
7.	Sease	onal Woo	d	Gooking					
	Diese	el (Ordina	ıry)		Transport+ DG				
			Annual E	Energy Consur	nption	of Therma	l Syster	n	
LPG	95	5,589 kg	Wood	570 Tons	Dies	sel (Transp	oort)	1,52,2	36 Litres
			Genera	l Loads (Both	Electr	ical and Th	lermal)		
				Indoor l	ighting	g: The ma	anagem	ent is now	committed to
				convert	the ex i	sting FTL i	into LEI	D in a phased	manner
8.	Light	ing Syste	m	* Outdoor lighting: All the street lightings are LED based					
	0	0-9		energy efficient lamps					
				Requested to retrofit timer based ON-OFF control in the					
	existing street lighting system								
✤ All the ceilir					ceiling	g fans are	e conve	entional typ	e only which
			consume	consumes nearly 60-70 W/fan at maximum position.					
0	Ean I	anda (Ca	iling)	* Ine audi	t team	requested	1 to cha	inge the conv	ventional fans
ש.	гап І	Juaus (Ce	1111g <i>)</i>	nhased n	JG Da	seu Electr	onicall	y commutat	cu ialis III a
				The ave	rage	Dower con	sumpti	on will be	35 W/fan at
				maximur	n posi	tion (More	than 50	0 % reduction	n)
<u> </u>				1					

10.	Air Conditioning System	•	Mostly BEE star rated ACs and the outdoor units are mostly
201			placed in shaded area of the respective building
		•	Mainly used for water distribution, purification and waste
11	Motors and Pump loads		water treatment
11.	Motors and rump loads		Small motors are used in hotel kitchen equipment's & in
			the canteen
		•	All the computers, server, surveillance, projectors,
12	Uninterrupted Power		telephonic units are connected with UPS with nominal back
12.	System (UPS)		up time of nearly 1 hours duration.
		•	Total capacity of the UPS is nearly 552 kVA .

Table-2: Annual Energy Consumption and Energy Generation (2023-2024)

s		Electricity	Wood	LPG	Di	iesel Consume	d (L)	Solar Energy
No.	Month	Consumption (kWh)	Consumption (Tons)	Consumed (kg)	DG	Transport	Total	Generation (kWh)
1.	Jun-23	33,705	40	7,600	711	11,087	11,798	490
2.	Jul-23	34,395	41	7,866	721	11,432	12,153	474
3.	Aug-23	35,213	45	8,246	725	11,102	11,827	482
4.	Sep-23	35,906	50	7,980	713	14,686	15,399	494
5.	Oct-23	36,658	49	8,170	704	14,701	15,405	500
6.	Nov-23	37,301	32	7,942	710	14,432	15,142	482
7.	Dec-23	28,758	41	8,018	712	12,405	13,117	475
8.	Jan-24	29,506	50	7,980	725	11,995	12,720	480
9.	Feb-24	30,428	58	7,714	712	8,596	9,308	635
10.	Mar-24	31,273	56	7,980	721	14,477	15,198	648
11.	Apr-24	32,173	52	7,923	724	13,088	13,812	648
12.	May-24	22,895	56	8,170	710	14,235	14,945	650
	Total	3,88,211	570	95,589	8,588	1,52,236	1,60,824	5968

• The cost of the electricity is Rs. 12.00/kWh (One LT service dedicated for the college)

• The cost of the LPG is Rs. 105.0/kg (70 % of the overall institution consumption is accounted)

• The Wood cost Rs. 8,500/Tons (70 % of the overall institution consumption is accounted)

• Green Energy Contribution from Solar PV: 6.5 %

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-B: ENERGY AUDIT REPORT

5. ENERGY CONSERVATION PROPOSALS (ENCONs)

ENCON I	Increasing the Energy Production from the Roof Top Solar					
ENCON-I	Photovoltaic System using regular Panel Cleaning Schedule					
Assessment Area	Energy generation from Roof Top Solar Photovoltaic System					
	• 5.7 kW roof top solar PV plant was installed on the roof top of the institution,					
	generating electricity to feeding to MV panel.					
	• The solar panels must be cleaned at regular intervals as the dust accumulation					
Observations	will reduce the expected power output and hence it is a loss of generation.					
Observations	• In general; a minimum of 1 % power generation may be improved by regularly					
	cleaning the panels. Most of the bulk power generating solar PV plant has					
	separate panel cleaning schedule (pipes, cleaning detergents and man power) to					
	operate the same.					
	Dirty solar panels					
	• Lose efficiency and lifespan, Reduce overall system performance					
	• May cause permanent module staining, Loss of return on investment					
	Affect your limited warranty					
Assessments	Whereas Regular cleaning					
	Ensures a maximum output and Maintains your warranty					
	• Saves money and Extends the life of the investment					
	• Prevents permanent module staining					
	• It is highly recommended to clean the solar panel (Use RO water for cleaning					
	with good mop stick is enough) monthly twice (15 days once) which ensures a					
	minimum of 1-2 % higher productivity for the same installed capacity.					
	• Prepare a separate cleaning schedule; assign a team of members with higher					
Decommondation	degree of supervision.					
(Target)	• Ensure the power output before and after cleaning. Visually inspect the panels					
	for any damage, cracks, stains and other abnormalities.					
	• Conduct an IR thermography study on the solar panels, solar DC and AC					
	connectors, AJB and Inverter once in a year.					
	• Identify any thermal hotspot generated to the atmospheric condition or due to					
	the functioning of electrical network and rectify it immediately.					

Parameters	Description			
Installed capacity of SPV Plant	5.7 kW (Grid Tied connected in MV Panel)			
Location	Roof Top of the Main Building			
Energy Calculation	Before	After		

Expected % of Energy Saving		2 % Improvement
Annual Energy Generation (Expected)	5,968 kWh	6,087 kWh
Annual Energy Saving		119 kWh
Annual Financial Saving		Rs. 9,110/-
(119 kWh x Rs. 12.00/kWh = Rs. 1,428/-)		
Initial Investment	-	Zero Cost
Simple Payback		Immediate

Tips for Solar Panel Cleaning:

- Never use an abrasive sponge or soap for your solar
- Not to use harsh materials when cleaning solar panels as they could cause damage, and solar panels are costly to repair.
- Run a hose along the panels to remove any dirt.
- Use a long-handled wiper to clean the panels while you are standing on the ground.
- Use safety ropes or a harness for support.
- Always watch out for dirt on the solar panels to make sure it doesn't build up.

ENCON-II	Reduction of Cable Losses and Active Power Consumption using
ENCON-II	Load End Capacitor Compensation (At DB Level)
Assessment Area	Electrical Distribution System
Observations	 HT electrical system from power house is being distributed through various electrical distribution panel board conveniently located in each building all over the college campus. Supply side power factor is maintained by fixed capacitors; whereas the load end PF is to be corrected by connecting suitable values of FC, mostly at the distribution panels.
Assessments	 In any electrical distribution network, the distribution losses may account for 2-6 % and this can be reduced by i) Selecting proper cable size (class 1 or 2) with reduced resistance and ii) Compensate the distribution losses by connecting load end capacitors at each higher capacity load and/or at DB level. This method has many advantages like i) reduction of kVA demand (applicable for HT consumer), ii) reduction of distribution losses and iii) maintaining the terminal voltage from source to load end.
Recommendation (Target)	• Connect suitable rating of capacitors (Nearly 10 kVAr, 3-Phase, 440/400 V, Heavy Duty) at the PCC and try to reduce the distribution line loss.

Parameters	Description	
No. of DBs (Approx. Value)	4 No's. (Fix as a trail at the entry of each block)	
kVAr required to connected	10 kVAr each in all DB	
Energy Calculation	Before	After
Expected % of Energy Saving		2.0 %
Annual Energy Consumed	3,88,211 kWh	3,80,447 kWh
Annual Energy Saving		7,764 kWh
Annual Financial Saving		Rs. 93,168/-
(7,764 kWh	x Rs. 12.00/kWh = Rs. 93,168/kWh = Rs. 93,168/kW	-)
Initial Investment	-	Rs. 20,000 /-
Per kVAr charge of Heavy-Duty Standard Make Capacitor is around Rs. 500/ Hence for 10 kVAr x		
4 locations = 40 kVAr ; the initial investment is Rs. 20,000/-		
Simple Payback		0.21 Years
CO ₂ Reduction		6.4 Tons/Annum

ENCON III	Reduction of Mechanical Transmission Losses in the STP Aerator Blower		
ENCON-III	Motor & Condition Monitoring of the Belt Slippage Loss		
Assessment Area	Energy Consecration in the Belt-Pulley Transmission System		
	• In STP; 02 no's of air blower motors with 11.0 kW/15.0 HP ; CG Make; 1,460 RPM; η		
Observations	= 89.6 % belt-driven 3G/3B -B 63 are running with tapper lock belt-pulley drive		
	system.		
	• V-belt drives rely entirely on friction between the belts and sheave grooves to		
	transmit power. Adequate friction is obtained through proper tensioning of the		
	belt.		
Assessments	• Standard V-belt drives, can stretch up to 3% of the original length throughout the		
	and the belt can slip.		
	• When slip occurs, additional heat is generated between the belts and grooves.		
	Slippage can also occur during torque spikes especially during start up time.		
	• Noticed that the present V belts are wobbling (most of the places) with high		
	percentage of slippage losses.		
	• Due to the wobbling, aging of the belts may lead to frequent replacement of belts.		
	However, the energy loss (approximately 8 to 10%) due to the belt transmission is		
	also high and is a loss for the industry.		
	• The cogged belts by design, is having 30 % more power carrying capacity for the		
	same classical V belt weight.		
	• The cogged belts run cooler, nearly 50 % more longer hours, and occupy less space		
	in the pulley.		
Recommendation	• The narrow and cogged belts operate higher speed ratios using smaller diameter		
(Target)	pulleys.		
	• Replace the existing motor into energy efficient motor along with the replacement		
	of conventional belt into cogged belt with resized pulley.		
	• It increases the lifespan of the belt and pulley and provides superior grip in the		
	mechanical power transmission.		
	• Also, the temperature on the belt and pulley; especially at the driving and non-		
	driving ends are less than conventional arrangement.		
	• Deemed savings for cogged belts would allow prescriptive or up-stream energy		
	efficiency, easing the burden on the end user to invest for better energy		
	conservation.		

Parameters	arameters Description	
Proposed cogged belt conversion	STP Aerator Blower (11.0 kW) – 2 No's	
(Each motor operates for 12 h	ours/day and the other mot	tor is standby)
Present Configuration	3 pulley/3 belt (1:1 Spe	ed configuration) – B 63 Belt
Energy Calculation	Before	After
Expected Power Savings (%)		8 %
Power Consumption	9.8 kW *	9.0 kW
(* Assuming if the moto	or operates at 80 % load con	ndition)
Cumulative Power Savings		0.8 kW
(Considering 12 hours of operation,	/day x 350 days/annum = 4	,200 hours/annum)
Annual Energy Saving (for one motor)		3,360 kWh
Annual Energy Savings (Two motors)		6,720 kWh
(6,720 kWh x Rs	. 12.00/kWh = Rs. 80,640/-)
Annual Financial Saving		Rs. 80,640/-
Initial Investment (for two motors)	-	Rs. 30,000 /-
(For the two motors with new	v resized tapper lock pulley	on both sides)
Simple Payback		Nearly 0.37 Years
CO ₂ Reduction		5.5 Tons/Annum
LIGHT DUTY Fractional HP (FHP) - Suitable for light duty applications normally using fractional horsepower motors	0.38" 3L 40° 40°	
CLASSICAL HEAVY DUTY Multi-Plus® - UniMatch® Wide range of sizes		
MOLDED COGGED Cogs allow use of smaller diameter pul- leys and provide heat dissipation. Raw Edge Sidewalls (no fabric cover) prevent slippage.	0.50" 0.66 0.66 0.66 0.66 0.66 0.66 0.66	"
WEDGE Narrower, deeper profile with higher power capability than classical v-belt. Allows for small- er, more compact drives.		
WEDGE COGGED Same properties of Wedge. Cogged for greater flexibility and heat dissipation. Raw Edge Sidewalls (no fabric cover) prevent slippage.		5VX

ENCON-IV	Reduction of Energy Consumption through retrofitting a Common		
	Variable Frequency Drive (VFD) in the STF Aerator blower Motor		
Assessment Area	Energy Conservation in the STP blower using closed loop automation		
Observations	 In STP; 02 no's of air blower motors with 11.0 kW/15.0 HP; CG Make; 1,460 RPM; η = 89.6 % belt-driven 3G/3B –B 63 are running with tapper lock belt-pulley drive system. 		
Assessments	 During the night time and in the early morning hours, these blowers run at the same speed to pump the oxygen in the aerator tank. Providing correct oxygen level at any moment requires automatic flow adjustments. Blower systems must therefore be most efficient, stable and adaptable to changing conditions. 		
Recommendation (Target)	 It is recommended to retrofit a VFD as a common to both the motors and operate this motor at reduced speed (by adjusting the frequency) during night and early morning hours as the ambient air has good amount of O₂. Or Retrofit the existing blower motor with Dissolved O₂ sensor based closed loop VFD system. This must be prominent to adjust the speed of the motor based on the availability of the oxygen. Some of the IT parks and other STP plants may turn off the aerator tank blowers especially during early morning by interlocking mechanism since the air itself has enough O₂ and no need to operate the blower and thus saves considerable amount of energy. 		

Parameters	Des	cription
Proposed cogged belt conversion	STP Aerator Blower (11.0 kW) – 2 Nos	
(Each motor operates for 12 ho	ours/day and the other mot	or is standby)
Energy Calculation	Before	After
Expected Power Savings (%)		20 %
Power Consumption	9.8 kW *	7.8 kW
(* Assuming if the motor operates at 80 % load condition)		
Cumulative Power Savings		2.0 kW
(Considering 12 hours of operation/day x 350 days/annum = 4,200 hours/annum)		
Annual Energy Saving (for one motor)		8,400 kWh
Annual Financial Saving		Rs. 1,00,800/-
Initial Investment (for two motors)	-	Rs. 1,00,000 /-
Simple Payback		Nearly 1.00 Year
CO ₂ Reduction		6.9 Tons/Annum

ENCON-V	Replacement of Existing Convention Ceiling Fans into	
	Electronically Commutated BLDC Fans	
Assessment Area	Energy conservation in ceiling fans located in the college campus	
Observations	College area including all Buildings, Class, Lab, Faculty cabins, Auditorium, Hostel	
	rooms & Other areas	
	• BLDC fans operate in less energy with same air delivery. Similarly, these fans	
	generate lesser noise, runs with inverter supply, remote control-based speed	
Assessments	control, aesthetic look and better lifespan.	
Assessments	• Conventional fans consume 1 unit of electricity for approximately 12-13 hours	
	of running period, whereas the BLDC fans consume the same 1 unit of	
	electricity for nearly 28-29 hours.	
Recommendation	• Recommended to replace the existing conventional fans into EC BLDC fans in	
(Target)	a phased manner and ensure good energy saving.	

Parameters	Description	
Total No. of Fans available	Consider nearly 100 No's of conven	itional fans to be changed from
Total NO. OF Falls available	conventional to BLDC fans in the hostels; accounts for 7.0 kW	
Approx. Operating Hours	10 hours/day & 300 days/Annum = 300 hours/annum	
(Average assumed value)	(Actual operating hours may change)	
Energy Calculation	Before	After
Power Consumed (Approx.)	7.0 kW	3.5 kW
Expected Reduction of Power		3.5 kW (50 % ↓)
Annual Energy Saving		10,500 kWh
Annual Financial Saving		Rs. 1,26,000/-
Initial Investment	-	Rs. 1,80,000/-
(Considering Rs. 2,000/fan - Salvage value of Rs. 200/fan for old fan = Rs. 1,800/fan)		
Simple Payback		Nearly 1.43 Years
CO ₂ Reduction		8.6 Tons/Annum

(Note: BLDC fans consume **less power when it operates at low speeds** which further saves energy. Further a conventional fan draws nearly about **100 VA**, whereas the EE fan draws only **30 VA**. This will be more beneficial for HT consumer as direct reduction of kVA rating).

One No-star regular fan's consumption in a year	1 x 2520 x 42 = 105840Wh or 105.84Units/year
For 30 million No-star fans sold in 2022, The energy consumed in a year	105.84 x 30 x 106 = 3.175 BillionUnits.
One 5-star SEE fan's consumption in a year	1 x 2520 x 14 = 35280Wh or 35.28Units/year
If 30 million 5-star SEE fans were sold in 2022,The energy consumed in a year	35.28 x 30 x 106 = 1.058 BillionUnits.
One 1-star fan's consumption in a year	1 x 2520 x 39 = 98,280Wh or 98.28Units/year
If 30 million 1-star fans are sold in 2022,The energy consumed in a year	98.28 x 30 x 106 = 2.948 BillionUnits. Note: (1 Unit = 1kWh)

ENCON VI	Reduction of LPG Consumption using Regular Burner Cleaning a	
ENCON-VI	Swapping of Active Burners.	
Assessment Area	LPG Consumption (Cooking system in kitchen area)	
Assessment	 Cooking system in the college mess mainly uses LPG as an energy carrier and utilize Gas stoves as a medium to cook the food. Gas stoves are easy to maintain. However, when the flow of gas gets blocked, the burner heads cannot burn efficiently. The best indicator for the efficiency of LPG system is the irregular flame pattern and yellow flames. Formation of soot in both side of the burners, cleaning methods and interval improves the efficiency and reduce the LPG consumption. 	
Recommendation (Target)	 LPG commercial burners are made up of cast iron in which smoke formation is high and frequently able to crack due to aging. It is recommended to clean the burner every week with solvent, rinse and gently clean the holes with ordinary fine cloth. Also, it is highly encouraged to swap with active spare burners. The investment on spare burners are less expensive. Make it a practice to swap the burner every week. Identify an alternative with Stainless Steel (SS) burners (slightly costlier compared with existing one). But the lifespan is longer and replacement cost is much reduced. Recommend to clean the burner at least twice in the week and saves nearly 5 % assured LPG saving. 	

Parameters	Description	
Swapping of new burners every week and cleaning of existing burner with natural ingredients		
(Ex: Dishwashing deterge	ent, Non-abrasive scrub pad, M	licrofiber towels)
Energy Calculation	Before	After
Expected Savings on LPG		2 %
LPG Consumption/Annum	38,236 kg *	37,471 kg
LPG Savings/Annum		765 kg
The expected financial savings is 765 kg x Rs. $105.0/kg = Rs. 80,325/Annum$		
Initial Investment	-	Rs. 20,000 /-
Purchasing of cleaning ingredients for Rs. 20,000 with a payback of 0.25 Years		
CO ₂ Reduction – 2.3 Tons/Annum		
(* From the total LPG of 95,589 kg; assuming 40 % of the LPG is being utilized for burner based stoves; hence		

it is **38,236 kg**).

Examples of Soot Formation in LPG burners:

ENCON VII	Reduction of LPG Consumption by converting the conventional		
ENCON-VII	Vapour Off-Take (VOT) system in to Liquid Off-Take System		
Assessment Area	LPG Consumption (Cooking System in Hostel Mess)		
Assessment	 At present the cooking has been done using Conventional single LPG VOT system by connecting 19.0 cylinders. Set pressure on the gas pipe line is nearly 3.0 bar. The left over in the cylinders are brought back to the kitchen and are fitted with single burner stove for preparing milk and tea. In conventional Vapour Off-Take (VOT) system, the gas left over is normally 0.5 kg/cylinder (19.0 kg cylinders). In LOT system; the gas left over being reduced to 0.1 kg/cylinder (in which 47.5 kg cylinder may be replaced) and thus LPG savings ensured. This system has high pressure vaporizer; which takes the liquid at nearly 6 bar pressure and vaporize it and sent the gas to the heating application at 3.0 bar pressure. Because of high pressure intake; the leftover in the cylinder is much lower. However the vaporizer has a heater coil; which is electrically controlled based on the closed loop temperature setting which consumes nearly 2 to 3 units/day (May vary depends on the heater coil capacity). 		
Recommendation (Target)	 It is recommended to convert the existing VOT system into advanced LOT system which is an advance concept in Multi-cylinder Installation; offers Strength of Bulk LPG Installation and easy functionality. LPG LOT System withdraws Liquid LPG up to 10 kg/h. LPG LOT has many advantages and to name a few; Compact design and safe usage. Requires less area than bulk installations Optimum utilization of gas (Minimum left-over) Uniform pressure (which saves nearly 20 % of LPG consumption) Cheaper than bulk installation & Almost zero maintenance cost Easy availability and convenient to handle 		

Energy and Financial Savings:

Parameters	Description	
Energy Calculation	Before	After
Leftover/Cylinder (Annual)	0.3 kg	0.0 kg
Expected LPG Savings/Cylinder		0.3 kg
Annual LPG Savings		1,510 kg
Annual LPG Savings = $0.3 \text{ kg x } 5,031 \text{ No's of cylinder/annum} = 1,510 \text{ kg}$		
Equivalent to 79 No's of 19.0 kg cylinders with a financial savings of		
1,510 kg x Rs. 105.00/kg = Rs. 1,58,550/Annum		

(Note: It is much simpler to maintain the LPG cylinders with higher safety in LOT arrangement. The management has to think in this direction and find a best way to implement the same in future).

ENCON VIII	Reduction of LPG Consumption in Dosa making Stove by replacing the	
ENCON-VIII	Conventional Burner with Radiant Burners	
Assessment Area	LPG Consumption (Cooking system in kitchen area)	
Assessment	 Nearly 30-40 % of the LPG is being delivered to Dosa making machine for making Dosa, Utappam, Chapathi etc., These stoves are not fitted with LPG flow meters and hence exact LPG utilization is not known. Conventional burners are used for cooking food. The stove emits heats in the surrounding area and hence increases the het in the ambient air which reduces the productivity of the person(s) working on and near the stove. 	
Recommendation (Target)	 Good side of 'FIRE' is radiant heat that generates Far Infra-red Rays (FIR). FIR is the most potent energy format to transmit heat into the smallest water molecule from 300 GHz to 430 THz. These waves cook food uniformly without burning and retain maximum moisture in food even after cooking. FIR belongs to the good spectrum of light that was discovered by NASA as the safest and most beneficial light wave to have healing properties. In general, flame and heat tend to accumulate at the centre where as in Radian Technology, regulate the flame evenly and uniformly across the burner. These burners are flameless, smokeless, and noiseless and produce uniform radiant heat. The device has been tested and certified by LERC ((LPG Equipment Research Centre – a premier research arm under Petroleum Ministry) at a thermal efficiency, under IS 14612, between 65-68.9% as against conventional commercial gas burners with an efficiency rating between 36-45%. 	

Parameters	Description		
Energy Calculation	Before	After	
Expected Savings on LPG		10 %	
LPG Consumption/Annum	38,236 kg * kg	34,412 kg	
(* From the total LPG of 95,589 kg; assuming 40 % of the LPG is being utilized for dosa making stoves; hence			
it is 38,236 kg. From that 20 % of saving could be possible).			
LPG Savings/Annum		3,824 kg	
The expected financial savings is 3,824 kg x Rs. 105.00/kg = Rs. 4,01,520/Annum			
Initial Investment	-	Rs. 2,00,000	
(Changing the existing burner with radiant burner and their subsystem for Dosa Stoves)			
Simple Payback		0.50 Years	
CO ₂ Reduction		11.5 Tons/Annum	

(Kindly visit https://www.agnisumukh.com/)

ENCON IV	Reduction of LPG Consumption in Boiler Feed Water Pre-heating		
EINCOIN-IA	using Solar Thermal Energy System		
Assessment Area	LPG consumption reduction in boiler steam generation by boiler feed water pre-		
	heating in the mess area		
	• The capacity on the boiler (Water tube type) is 0.5 Ton/hour installed in		
	centralized kitchen. The fuel input for the boiler is Wood.		
	• Only RO water is being fed to the boiler through a feed pump and a separate RO		
	water tank is located near to the boiler house.		
	• It is a good practice to supply RO water to the boiler; as it prevents i)		
	Removal of over 98% of dissolved solids in the makeup - including scale		
Assessment	forming salts that lower heat transfer, ii) Increase boiler efficiency through		
	minimized boiler deposits and iii) Reduction of feed water alkalinity – with the		
	direct result of lower neutralizing amine use.		
	• However at present the feed water is being supplied to the heating chamber at		
	atmospheric temperature and there is no pre-heating treatment.		
	• Also the condensate water recovery is not practised in the boiler operation due		
	to operational difficulties.		
	• Increased feed water temperature, must reduce the work done by the boiler to		
	reduce fuel consumption.		
	• For the kitchen application, condensate generation is less. Recovery of		
	condensate water and return of it into feed water tank is slightly complicated		
	and economically not viable.		
Recommendation	• However, the audit team suggest to install a 1,000 LPD solar thermal system		
(Target)	(for one boiler operation) at the rooftop of the respective building and preheat		
(Talget)	the feed water from ambient to nearly 55 to 60° C and supply to the boiler. This		
	energy conservation proposal must substantially reduce the LPG consumption		
	during the cold-start operation of the boiler.		
	• Increasing the feed water temperature by 8°C may save 3 % fuel consumption		
	and thus change in temperature may be taken as defined time of operation of		
	the control mechanism.		
	1		

Calculation of Energy Mapping between LPG and Solar Thermal Energy System:

• Assuming nearly 2,000 litre of water heater is being used for a boiler to produce steam per day; the energy calculation is presented below;

S. No.	Description	Parameters
1.	Quantity of hot water produced per day	2,000 kg (litres)
2.	Energy required to heat the water from ambient (25°C) to 60 °C (Sensible heat)	$= m x C_P x \Delta t$ = 2,000 x 1 x (60 - 25) = 70,000 kcal/day

3.	Energy input to the boiler (considering 40 $\%$ as boiler efficiency)^1	$=\frac{70,000}{0.4}$ = 1,75,000 kcal/day
4.	LPG required to heat up to supply same quantity of heat energy is given by one to one comparison) ²	$=\frac{1.75,000}{4,000}$ = 43.8 kg/Day
5.	Total LPG required/annum (By assuming 200 operating days/annum) – This energy is saved.	8,760 kg/Annum

(¹ typical cooking boilers are in the range of 35-40 % efficiency only)

² Gross Calorific Value (GCV) of the Wood is 4,000 kcal/kg)

Energy and Financial Saving Calculation:

Parameters	Description		
Energy Calculation	Before	After	
Expected Fuel Savings/Annum		8,760 kg (8.8 Tons)	
Annual Financial Savings		Rs. 73,920/-	
(8.8 Tons x Rs. 8,400/Ton = Rs. 73,920/-)			
Initial Investment	-	Rs. 2.00,000 /-	
Simple Payback Period		Nearly 3.38 Years	
• Installation of 2,000 + 2,000 LPD industrial solar water heating system either with FPC or ETC			

(copper with chrome coated, Insulated SS tanks & pipes (May be added with backup electric heating system).

• The initial investment amount includes a 30 % capital subsidy from MNRE.

CO₂ Reduction – 16.7 Tons/Annum

ENCON-Y	Reduction of Heat Energy Exposed in the Steam Pipes Lines		
ENCON-X	(Especially in Pipes Joints) using Thermo Ceramic Coating (TCC)		
Assessment Area	Steam Boiler use for Cooking System in Hostel Mess		
Assessment	 The major consumption of wood in the cooking system is in the boiler which is used to generate steam for cooking application. Optimization in any form in the boiler will lead to a huge savings and reduced the specific energy consumption significantly. Steam is distributed to the cooking application through proper piping system operated at required pressure and flow. All the pipes are surrounded two-layer insulation namely i) Ceramic wool insulation acts as a first layer and ii) then covered by metal cladding. These insulations prevent the heat exposed in the atmosphere due to which the energy content in the steam is being maintained. Also, it avoids the condensation while exposing to atmosphere air. However, the pipe joints; bends (T and L bends) and left-over pipes are usually uncovered and are directly exposed to the atmosphere. These areas where energy loss happens and usually the surface temperature is high (nearly 70-80 °C). It is a good practice to maintain the skin temperature at a maximum of 20 °C above the ambient temperature. This will lead to consume less fire wood and thus saves energy. 		
Recommendation (Target)	 The heat exposed to the atmosphere also leads to the energy loss. The audit team recommends arresting the heat and hence saving the energy. Thermo Ceramic Coating (TCC) - an energy saving coating is a combination of specialized high temperature resins and heat reflecting ceramics. Applied on the outside metallic pipes and it reflects radiation heat back in the process area, thereby preventing radiation heat losses and save the fuel energy. The benefits of using TCC coating are i) saving on running time, ii) reduction in heat in internal walls and ceilings, iii) no damage (change) in the existing insulation, iv) zero maintenance and v) saves energy between 5-10 %. Two types coating material is available namely i) TCC -1200 °C or applying on Internal Ceramic Wool/ Blanket and ii) TCC-200 °C for applying on External Shell of Furnace. 		

Parameters	Description	
Energy Calculation	Before	After
Expected Savings on wood		5 %
Wood Consumption/Annum	570 Tons	541.5 Tons
Wood Savings/Annum		28.5 Tons
The expected financial savings is 28.5 Tons x Rs. 8,400/Ton = Rs. 2,39,400/Annum		
Initial Investment	-	Rs. 2,00,000
Simple Payback		Nearly 0.84 Years
CO ₂ Reduction		54.2 Tons/Annum

Renewable Energy	Proposal on "Solar Based Energy Generation: Installation of Roof Top Solar
Photov	voltaic Power Plant (SPP) and Reduction in the Energy Billing"
Assessment Area	Electrical Distribution System (Energy Utilization Pattern)
Observations	• All the electricity consumers (irrespective of their tariff structure) are eligible to install SPP in their roofing; start generating power and being fully utilized by the consumer (connecting the inverter output to any of the SSB or in the MV panel).
Assessments	 Installation of renewable energy-based power generation might be mandatory in future (as per policies of either state or central or both). Some bankers are now insisting that the consumer has to install a quantum of renewable energy system to reduce their carbon footprint when they avail top-up loads for expansion activities. Further; during the environment assessment; power generation from the solar plant is being utilized to neutralize the CO₂ emission. Hence it will be value added utility for the company.
Recommendation (Target)	 The open terrace on the factory is completely vacant (also not affected by building, tree and any other artificial shading) which may be used to install appreciable capacity of Solar Photovoltaic Power Plant. After measuring the terrace; appropriate power capacity of SPV plant must be installed. However, the audit team recommends to install 100 kW roof top solar PV plant initially and later on expand if required.
Technology Driven Solar System	 Mono PERC Solar PV System: With a technology that combines rear wafer surface passivation and local rear contacts to maximize light capture, mono PERC solar modules are paving the way for dramatically increased PV system efficiency. The standard monocrystalline cell presents a uniform Back Surface Field (BSF), whereas the mono PERC solar cell presents local BSF atop passivation and SINx capping layers, which significantly improves the capture of light and electrons. The advantages of Mono PERC PV system are; High-performance mono PERC cell structure. Exceptional performance under low-light and high temperature conditions. Higher energy density/square foot. Increased light absorption, as unabsorbed light is reflected back to the solar cell. Extended cable lengths for easier installation; Superior anti-reflective coating captures more light to deliver increased efficiency.

lacksquare Enhanced junction box sealing protects against moisture and
extends product life.
• Back Sheets in PV Panels: The primary function of the PV back sheet material
is to offer protection to the solar module's various components throughout
its lifetime.
• This in turn ensures loss-free energy generation for the solar panel. The
solar back sheet should be able to resist active environmental elements such
as moisture, temperature changes, chemical substances and physical
damages for years on end.
• The active electrical elements found within the modules must also be
insulated to ensure the safety of surroundings.

Energy & Financial Saving Calculation:

Parameters	Units	Description
Power capacity of the proposed SPP	kW	100
Maximum sun shine hour (Solar hour)	Hours	3.5
Annual Operating Days	Days	250
Maximum energy generated from SPP	kWh	87,500
Annual Financial Saving	Rs.	8.1 Lakhs
Initial Investment (Assessment, erection& commissioning)	Rs.	42.0 Lakhs
Simple Payback Period		5.2 Years

(Note: Installation of RES especially solar plants; the total cost of the system is being claimed in depreciation which is more beneficial for the consumer. The first-year depreciation is 60% of the total investment which makes solar attractive and quicker Return on Investment).

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-B: ENVIRONMENT AUDIT REPORT

6. ESTIMATION

OF

CO₂ EMISSION & NEUTRALIZATION

(ELECTRICITY, WOOD, LPG, DIESEL, MATURE TREES & SOLAR PV SYSTEM)

6.1: Assessment of Annual Energy Usage:

Table-3 shows the types of energy carriers used for their regular operation in the college campus along with application area and their source.

S. No.	Type of Energy Carrier	Application Area	Source of Procurement
1.	Electricity (LT Service - 01 No)	Powering to all electrical / electronic /	From TANGEDCO
2.	Solar PV System (5.7 kW)	HVAC equipment s	Captive Power Generation
3.	Diesel	Transport vehicles and Diesel Generator (Captive Generation)	From authorised distributor
4.	Liquified Petroleum Gas (LPG)	Used only for cooking	
5.	Seasonal Wood	osca omy for cooking	From Local Vendor
6.	Mature Trees, Bushes & shrubs	The college has nearly 570 mature trees of different varieties which more than 10 years old.	

Table-3: Energy Carriers, Application area and their sources used for College Operation

6.2: Environmental System: CO2 Balance Sheet:

- $\rightarrow~CO_2$ Balance sheet is the indicator on the carbon emission and their neutralization in a year
- \rightarrow As per the Environmental Management System (EMS); only Scope-1 & Scope-2 based energy consumption is accounted.
- \rightarrow The following tables provide the balance sheet indicating various energy carriers associated with the regular activities and their CO₂ mapping.

Table-4: Environmental System: CO₂ Balance Sheet (2023-24)

S.	Annual Energy Consumption & CO ₂ Emission			Annual CO ₂ Neutralization		
No.	Description	Parameters	Emission (Tons)	Description	Parameters	Neutralized (Tons)
1.	Wood	570 Tons	1,083.0	Electricity (DG)	27,482 kWh	24.5
2.	Diesel	1,60,824 Litres	424.6	Mature Tree	570 No's	12.4
3.	Electricity	3,88,211 kWh	318.3	Solar Energy	5 968 kWh	49
4.	LPG	95,589 kg	286.8	bolar Energy	0,700	,
Total Emission 2,112.7				Total-Neut	tralized	41.8
Balance CO_2 to be Neutralized = 2,070.8 Tons/Annum;						
	Per capita Consumption = 403 Grams/Person*					

(* No. of Students, Faculty & Staff for the year 2023-24 is 5,143)

6.3: Calculation Table:

For Electricity = $\left[kWh \times \frac{0.82 \text{ kg of CO2 emission}}{kWh} \right]$
For Diesel = $\left[\text{Diesel Consumption (Litre) x } \frac{2.64 \text{ kg of CO2 emission}}{\text{Litre of Fuel Consumption}} \right]$
For LPG = $\left[LPG \text{ Consumption (kg) } x \frac{3.0 \text{ kg of CO2 emission}}{\text{kg of LPG Consumption}} \right]$
For Wood = [Wood Consumption (kg) x 1.9 kg of CO2 Consumption]
A mature tree is able to absorb nearly CO ₂ at a rate of 21.8 kg/annum; $\frac{(21.8 \times 570)}{1,000} = 12.4 \frac{\text{Tons}}{\text{Annum}}$

6.4: Recommendations:

From the above discussion points; it is evident that activities taken forward to neutralize the CO_2 is predominant and to become a Net-Zero Carbon Emission buildings. The management has to plan several activities achieve the target.

- Increase the foot print of trees planted inside the college campus.
- Encourage the students to plant more trees and account them all.
- It is a right time to install considerable amount of roof top solar PV plant and generate the electricity. This must reduce the utility supply and hence reduce the direct CO₂ reduction.
- As per the Solar Policy-2019 from Government of Tamilnadu; for any educational institutions have to implement substantiate a minimum of 6 % of its energy generation from renewable energy source.
- Convert existing convention street lightings into solar based battery-operated lightings.
- Identify higher fuel consuming vehicle and either rework or replace it.
- Conduct training programmes for the transport staffs at regular interval and encourage them to maintain the vehicles at good condition throughout the year.

6.5: References:

¹https://ecoscore.be/en/info/ecoscore/co2

³http://www.tenmilliontrees.org/trees/#:~:text=A%20mature%20tree%20absorbs%20carbon,the%20ave rage%20car's%20annual%20mileage

CO2 Emission: 2,112.7 Tons/Annum

Planned CO₂ Reduction 41.8 Tons/Annum

CO₂ to be neutralized 2,070.8 Tons/Annum

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-B: ENVIRONMENT AUDIT REPORT

7. TRANSPORT, FIRE EXTINGUISHERS & REFRIGERANT GASES IN AIR CONDITIONING SYSTEM

7.1: List of Transport Vehicles:

- Pollution level of all vehicles are regularly monitored and are maintained within the prescribed limit since the college is committed to provide green environment for better atmosphere.
- ✓ The list of transporting vehicles along with their type of engine are represented in Table-5.

S. No.	Type of Vehicle	Fuel used	No. of vehicles	Pollution certified (Y/N)
1.	Bus	Diesel	16	Yes
Total No. of Vehicles			16	Yes

Table-5: List of Transporting Vehicles available in the College

7.2: Details of Pollution Free Transport Vehicles & Copy of Pollution Certificate:

- The college is committed to green environment not only in the campus; but also, to the entire atmosphere. In order to commute the students and staff; the management is operating vehicle services from various places to the college.
- These vehicles are well maintained by a set of dedicated bus operators and are continuously monitored by the management officials.
- No history of accidents (either major and/or minor) for the past five years. Maintaining best performance on the engine, tyre and other accessories.
- Maintaining proper records on each trip, fuel consumption, distance travelled, no. of passengers and mileage (kmpl)
- All the drives and helpers are well experienced with good track records on i) fuel economy, ii) maintenance free operation, iii) accident free and iv) student friendly.
- All the vehicles are checked periodically and are having valid pollution certificate and certificate of insurance. These vehicles are fitted with Bharat Standard (BS)-IV type engines. However, the management has a commitment to convert the vehicles to BS-VI; once the life time of the vehicles are ended.
- The college administration is also providing skill development training to the bus operator through renowned experts and improve their productivity. Further the management is also conducting regular medical camps for all the bus operator through which i) complete body check-up, ii) blood pressure, iii) blood sugar level, iv) vision check-up and v) other general medical examination are carried out.
- High Speed Diesel (HSD) is used as fuel for all the vehicles; which emits less CO₂ in the atmosphere than compared to conventional fuel. Further; the fuel is procured from a single consumer and hence it maintains the quality and provides good engine life.

Pollution Under Authorised By : State Transport Dep	artment			
Date Time Validity upto	: 04/11/2024 : 13:17:45 PM : 03/05/2025	Test V	Jalidity	
Certificate SL. No. Registration No. Date of Registration Month & Year of Manuf Valid Mobile Number Emission Norms Fuel PUC Code GSTIN Fees MIL observation	acturing	TN028002500233 TN28AF0396 10/Dec/2009 July-2009 BHARAT STAGE II DIESEL TN0280025 Rs.110.00 No	02	
vehicle Photo 60 mm x 30 m	with Registration plate			
Sr. No.	Pollutant (as	Units (as	Emission limits	Measured Value (upto 2 decimal
Sr. No.	Pollutant (as applicable)	Units (as applicable)	Emission limits	Measured Value (upto 2 decimal places)
Sr. No.	Pollutant (as applicable) 2	Units (as applicable)	Emission limits	Measured Value (upto 2 decimal places) 5
Sr. No. 1 Idling Emissions	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC)	er Units (as applicable) 3 percentage (%) ppm	Emission limits	Measured Value (upto 2 decimal places) 5
Sr. No. 1 Idling Emissions	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO	er Units (as applicable) 3 percentage (%) ppm percentage (%)	Emission limits	Measured Value (upto 2 decimal places) 5
Sr. No. 1 Idling Emissions High idling	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO RPM	er Units (as applicable) 3 percentage (%) ppm percentage (%) RPM	28 AF 0396 Emission limits 4 2500 ± 200	Measured Value (upto 2 decimal places) 5
Sr. No. 1 Idling Emissions High idling emissions	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO RPM Lambda	er Units (as applicable) 3 percentage (%) ppm percentage (%) RPM	28 AF 0396 Emission limits 4 2500 ± 200 1 ± 0.03	Measured Value (upto 2 decimal places) 5
Sr. No. 1 Idling Emissions High idling emissions Smoke Density	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO RPM Lambda Light absorption coefficient	er Units (as applicable) 3 percentage (%) ppm percentage (%) RPM - 1/metre	28 AF 0396 Emission limits 4 2500 ± 200 1 ± 0.03 2.45	Measured Value (upto 2 decimal places) 5 1.08
Sr. No. 1 Idling Emissions High idling emissions Smoke Density This PUC certif	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO RPM Lambda Light absorption coefficient	er Units (as applicable) 3 percentage (%) ppm percentage (%) RPM - 1/metre	Emission limits 4 2500 ± 200 1 ± 0.03 2.45 register of motor v	Measured Value (upto 2 decimal places) 5 1.08 vehicles and does
Sr. No. 1 Idling Emissions High idling emissions Smoke Density This PUC certif	Pollutant (as applicable) 2 Carbon Monoxide (CO) Hydrocarbon, (THC/HC) CO RPM Lambda Light absorption coefficient icate is system generated not re-	er Units (as applicable) 3 percentage (%) ppm percentage (%) RPM - 1/metre through the national equire any signature.	Emission limits 4 2500 ± 200 1 ± 0.03 2.45 register of motor v	Measured Value (upto 2 decimal places) 5 1.08 vehicles and does puc.parivahan.gov.in

Sample Pollution Certificate for a Transport Vehicle

<u> 7.3. E- Vehicle:</u>

- → PEC is more conscious about locally created environment pollution and are now running a Battery-Operated Electrical Vehicle (BOEV).
- → This vehicle is mainly employed to carry the visitors for campus tour and is nearly running for 4-5 hours/day.
- → Charged every day and put in to service for operation. Nearly it runs **30-40 km** per charging. The charging point is located inside the college campus.
- → Battery powered vehicles are operated with posted speed limits within this campus for pick and drops the students and teachers from parking area to college campus.

7.4: Installation on Fire extinguishers:

• The list of Fire Extinguishers are given below:

S. No.	Туре	Capacity	Quantity
1.	CO 2	4.5 kg	20
2.	CO 2	2.0 kg	15
3.	ABC	6.0 kg	30
4.	ABC	2.0 kg	10
5.	ABC	1.0 kg	10
	85		

- Recommend to install adequate Fire extinguishers in all the vulnerable points.
- They are also inspected with refilled and in good condition (with adequate pressure indicated in the meter).
- The institution is recommended to conduct the following fire safety training Programmes to all levels of people at regular interval and list of the training programme along with the type & frequency is represented in the below table.

S No	Training	Mode of Training	Subject	Frequency
5.110	Description	Mode of Training	Subject	riequency
1.	Fire mock drill	Internal faculty	 ✓ Alarm operation ✓ Isolation of power supply ✓ Fire brigade ✓ Evacuation Procedures ✓ Assembly & Roll call 	Every 6 Months
2.	Fire mock drill & Fire Fighting Training	External Faculty	 Same as Mock drill Recognize the fire hazards Fire safety equipment's Hands on FE operation 	Every 12 Months

7.5: List of Air Conditioning System along with its Refrigerant:

The list of AC available is shown in Table-6: indicating their quantity, tonnage, type of refrigerant, GWP and ODP.

S. No.	Location	Star Rating	Quantity	Refrigerant	GWP	ODP
1. Ma	Main Building	3 Star	68	R 22	1810	Medium
	Mani Dunang	5 Star	5	R 32	675	Zero
2.	2 Temple Tower Building	3 Star	10	R 22	1810	Medium
2. 1		3 Star	10	R 22	1810	Medium
3.	Additional Block	3 Star	5	R 22	1810	Medium
		3 Star	12	R 22	1810	Medium
4.	First year Block	3 Star	5	R 22	1810	Medium
		5 Star	2	R 22	1810	Medium

Table-6: List of Multi-variant AC System, Type of Refrigerant, GWP and ODP Values

- Note: The most environment-friendly refrigerants that are available in Indian market currently are "R-290" and "R-600A". They are Hydrocarbons and their chemical names are "Propane" for R-290 and "Iso-Butane" for R-600A
- They are completely halogen free, have no ozone depletion potential and are lowest in terms of global warming potential. They also have high-energy efficiency but are highly flammable as they are hydrocarbons. (Kindly refer: https://www.bijlibachao.com/air-conditioners/comparison-of-various-refrigerants-r-410a-r-22-r-290-r-134a-used-for-air-conditioners-and-refrigerators.html).

Refrigerant	Global Warming Potential	Ozone Depletion Potential
R-22	1810	Medium
R-410A	2088	Zero
R-32	675	Zero
R-134A	1430	Zero
R-290	3	Zero
R-600A	3	Zero

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-B: ENVIRONMENT AUDIT REPORT

8. USAGE OF CHEMICALS, SALTS & ACIDS

(STORAGE, HANDLING & BEST OPERATING PRACTICES)

8.1: Handling of Chemicals/Salts/Acids used in the Laboratories:

The science departments uses chemicals for experimental applications and are having strict safety rules as follows;

- Well trained faculty and lab assistants who have knowledge about the hazardous nature of each and every chemical are only allowed to handle the chemicals safely
- **7** Strictly follow the manufacturer's instruction on the container in order to preventaccidents
- **7** Volatile or highly odorous chemicals, fuming acids are stored in a ventilated area
- **7** Chemicals are stored in eye level and never on the top shelf of storage unit
- All stored chemicals; especially flammable liquids are kept away from heat and direct sunlight.
 Reactive chemicals are not stored closely
- **7** Hazardous and corrosive chemicals are kept on sand platform to avoid corrosion
- **7** First aid box and fire extinguishers are readily available in the laboratory

8.2: Storage of Chemicals/Salts/Acids:

Less concentrated chemicals, salts and acids are stored in proper racks, cupboards and high concentrated acids are stored in separate area filled with sand.

- Most of the chemicals, salts and acids used in the science departments are inorganic in nature and no harmful effects are created during the experiment process
- + However, after completion of each experiment, the wastes are washed in the water sink and are rooted to common choke pit.
- Only trained teaching and non-teaching staffs are handling the chemicals and also, they are well trained to handle any abnormal laboratories.
- + Recommend to fix adequate and correct sequence of fire extinguishers are placed near all the laboratories

8.3: Recommendations:

- \Rightarrow Display the **Dos and Don'ts** inside the laboratory
- \Rightarrow Print the Dos & Don'ts in the Students laboratory manual
- \Rightarrow During the first class, demonstrate a PPT presentation and explain the safety procedures
- ⇒ Provide training to the teaching and technical staffs member on latest updates on chemical storage, handling, and safe disposal
- ⇒ Also encourage to conduct such type of training programmes by the faculty member to nearby schools and college (as an outreach programme)
- \Rightarrow Fix the First Aid Box (with all necessary medicines)
- ⇒ Place the names (along with their photo and mobile number) of the professionals training to handle fire extinguishers
- ⇒ Prepare & adopt a **Chemical Policy** (Including procurement, storage, handling, distribution, & disposal

8.4: Use of Chemical for Vessels & Floor Cleaning:

In order to maintain hygiene in the College campus; the administration regularly clean the floors and restrooms. In addition to this, the hostel management has to monitor i) the cleaning of vessels, kitchen floor, dining hall, store room and gas station. Table-6 shows the cleaning agents used to clean the above-mentioned area;

S. No.	Cleaning Agent	Application
1.	Soap Oil	Vessel Cleaning
2.	Phenol	Floor Cleaning

Table-7: Cleaning Agents used for Floor and Vessel Cleaning

8.5: Recommendations: Eco Friendly – Green Cleaning Agents:

- It is recommended to use natural ingredients like orange peel extract & vinegar. It leaves a mild and pleasant fragrance after use. The formula is free from all harmful chemicals & toxins. It is pH-neutral, gentle on the skin as well as on the surface where it is used
- Also, these products are **IGBC GreenPro** certified. GreenPro is a mark of guarantee that the product is environment friendly throughout its life cycle

Green Pro Certified Eco-Friendly Cleaning Agents

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART- C: GREEN AUDIT REPORT

9. WATER UTILIZATION,

CONSERVATION

&

WATER MANAGEMENT

9.1: Source of Water, Storage and Distribution:

Table-8 shows the source of water, location of storage along with their application.

Source of Water	Location	Application	
Municipal Water	Separate sump of 20,000 Litre capacity	Only used for drinking application	
Open well (01 No.)	Front of the College with nearly 70 Feet Depth	Utensil Cleaning, Bathing, Cloth	
Bore Water	3 Nos of bore wells located inside the college campus	Washing, Gardening & Construction	
Rain Water Harvesting System (RWHS)	Centralised location named as "Amarthavarshini" with a storage capacitor of 2 Crore Litres.	To store building & road run-offsUsed to increase the ground water	

Table-8: Source of Water, Location of Storage and Application

9.2: Details of the Water Utilities, Storage, Motor Capacity and Approximate Run Hours:

The following table provides the details of the Water Utilities, Storage, Motor Capacity and Approximate Run Hours available inside the college for regular application.

Table-9:	Details of the	Water Utilities	, Storage, Mo	otor Capaci	ty and Approxi	mate Run Hours

S. No.	Source of Water	Depth	Sump Capacity	Tank Capacity
1.	Open well	Nearly 70 ft	20,000 Litres	Main Building: 2,000 L x 2 No's HDPF Tank (Interconnected) to store drinking water 20,000 L; Cement tank is used to store Bore and Open well water
2.	Bore Well	Nearly 350 ft		Core Building: 20,000 L capacity Cement tank patrician with 12,000 L capacity each

Note:

- Tover Head (OH) tanks drinking water tanks are High Density Polyehelne models.
- OH salt water tanks are Cement construction.
- The maintenance team ensure to clean the tank for three months once.
- Bleaching power is mostly used to clean the inside tank.
- Water Dispenser is located and used to distribute the drinking water with Normal, Hot and Cold options
- Provide the college campus.
 *** Nearly **09 Nos** of water dispensers are located inside the college campus.
- Treated water from the Sewage Treatment Plant (STP) is used for Gardening application.

9.3: Water Savings in Foreign Toilets:

• The list of availability of Indian & Foreign style toilets are presented in the below Table-10.

Table - 10: List of Indian & Foreign Style Toiles available in the College
--

S No.	Location	No. of Toilets		
Diffo	location	Indian	Foreign	
1.	Main Building	34	08	
2.	Temple Tower Building	30	08	
3.	Additional Block	30	06	
4.	First year Block	38	14	
	Total	132	36	

• In general, the flush tank capacity may be 8 to 10 Litres (depends on make and model). Water savings also leads to power saving it saves the operating duration of the water pumps directly.

9.4: Rain Water Harvesting (RWH) - from Building Roof Area & Road Run-off Area:

- The audit team appreciates the effects taken by the management of PAAVI ENGINEERING COLLEGE (Autonomous) for harvesting the rain water almost in all buildings.
- The roof area is so arranged to collect the rainwater and then passed through proper piping system, and then bring back to a Common Collection System named as "Amarthavarshini" with a collection capacity of Nearly 2 Crore Liters.
- T lt look like a Pond and many living species are available in and around the pond.
- Because of implementing this centralized storage facility; the ground water level in and around the college are in increased.

9.5: Sewage Treatment Plant:

- It must be appreciated that the management of PCE has implemented conventional wastewater treatment (with a capacity of **2,00,000 litres/day**).
- All the sewage waters are collected in main tank with a capacity of 1 Lakh Litres. It is then agitated using raw sewage pump for specified period of time and then let it out to filter tank.
- From the main tank; the treated water is then passed to Aerator tank having 11 HP blower used to deliver dissolved oxygen at 4-6 bar pressure. However this motor is running 24 hours. However this motor is operated based on the quantity of the sewage collected. If the quantity is less (during lean period of college operation), this motor is turned off manually.
- Urea + TFA (Trifluoroacetic Acid) urea acts as an effective catalyst for sludge removal and processing is being added at regular interval.
- **Sludge Treatment and Usage:** All the sludge's are settled in the tank and pumped back to main tank. Once the quantity of the sludge is appreciable; then it will be taken out and used as manure for gardening.

Various Stage of Sewage Treatment Plant (STP)

9.6: Recommendations for Water Distribution Network:

- → **Display of Water Consumption:** Water consumption is the major utility in the factory. The consumption pattern is not constant and all the stack holders should know the facts of usage of water (and also energy) metrics along with its financial debuts.
- → Hence monitor and display the water consumption at appropriate places and encourage everyone to save water.
- → All the pump motor must be controlled by floating sensor and hence the motors are automatically ON and OFF. It avoids the overflow and hence saves water and electrical energy.
- → All the buildings are fitted with water flow meters and hence the water utilization is properly accounted. However clear picture of actual consumption must be recorded (either manually or digitally).
- → Similar to the water flow meter; energy consumption of all pumping motors is recorded using panel board meters. Manually the readings are taken and computed to calculate the cost of the treated water.
- → Fault and leakage in the water distribution line will be promptly informed by the respective in-charges to the maintenance team and immediately arrested.
- \rightarrow It is advisable to replace all the old taps without aerator into aerator-based taps in a phased manner.
- \rightarrow Faucet aerators consists of a small screen which spans the opening of the faucet. Aerators helps to reduce and regulate water flow and also offer the following benefits;
 - + Decreased Faucet Noise & Consistent Water Pressure
 - ✦ Lower Water Bills
 - ✤ Improved Water Pressure
 - ✤ Increased Filtration
 - ✤ Minimized Splashing
 - ✦ Simple and Quick Installation

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART – C: GREEN AUDIT REPORT

10. WASTE HANDLING

&

MANAGEMENT

10.1: Solid Waste Management System:

Different types of wastes generated inside the college premises are represented in the block diagram given below.

10.2: Process of Waste Management:

N.T

6.

. . * * *

The college management practised some methods to treat the waste generated and Table-11 shows the process of treating the solid waste generated inside the college campus.

S. NO.	Waste Type	Waste Treatment				
Bio-Degradable Waste Management						
1.	Food and Vegetable Waste	• Collected and used as a input fuel for the Biogas Energy Generation System				
2.	Garden Wastes and Plant Leaves	Daily collected and dumped in a yard				
3.		Collected and stored in a separate place				
	Paper Waste	Sold to third party for recycling				
		Daily paper waste stored in a yard				
	Non-Bio-Degradabl	le Waste Management				
		• Banned in the college campus (Welcome step).				
4.	Plastics	• The chemical/salt storage containers are				
		disposed to third party				
5.	Construction Waste	 Mostly used by their own construction and used for internal land filling 				

Table-11: Process of Waste Managemen	t
--------------------------------------	---

* * *

. .

Construction metals or metals from any other

sources are stored & sale to third party for recycling

.

Metals

7.	Transport Oil + Tyres	• Stored in a separate place and sold to third party
8.	DG Engine oil & Coolant	• Stored in a separate place and sold to Construction Purpose Only
9.	Vehicle & Computer Batteries	Procuring new batteries with buyback offer(Old battery replacement)
10.	Used edible oil	• Almost zero waste. Mostly used for internal cooking and frying.
11.	E-Waste Management	Used for sale to third party for recycling

10.3: Standards Followed for Waste Handling & Management:

- 1. Solid Waste Management Rules 2016
- 2. E-Waste Management Rules 2016
- 3. Hazardous Waste Management Rules 2016 (Management & Trans boundary)
- 4. Battery Management Rules 2001 (Management & Handling)

10.4: General Note:

- Prepare a flow chart for collection of E-waste from Generation to Disposal and paste it on appropriate places
- An electronic weighing scale (with suitable capacity) must be installed in the storage yard and should be properly calibrated
- One emergency lamp (with UPS supply) must be installed along with suitable fire extinguisher.
 Ensure proper ventilation in the yard
- Form rule for declaring the waste as E-Waste & Assign the singing authorities
- Identify a third-party vendor to procure the E-waste from the college
- Establish MoU with that party. Disseminate the following information at appropriate places i) E-Waste Policy, ii) Process Methodology, iii) Copy of MoU with third party vendor, iv) Contact persons mobile number and E-mail.
- Identify certain vehicle to carry the waste from generation to storage yard
- Provide training to the man power who are handling the waste
- Maintain separate Delivery Challan, Billing, weighing mechanism for handling the E-Waste
- ✤ Update the status of E-waste (through digital circular) to all the concerned management representatives, faculty members and staff at regular intervals (month wise is good)

Solid Waste Management (Collection, Segregation, Storage & Safe Disposal)

10.5: E-Waste Management:

- ⊕ With the proliferation of electronics also comes the challenge of their proper disposal. The institute has very efficient mechanism to dispose E wastes generated from various sources.
- ⊕ The major e-waste such as written-off instruments/equipment, old version computers, printers, electronic gadgets/circuits, kits have been written off on regular basis and condemned devices and materials from computer lab are sold to the e-waste management companies/buyers in Coimbatore.
- All the miscellaneous e-waste such as CDs, batteries, fluorescent bulbs, PCBs, and electronic items are collected and delivered for safe disposal. Minor repairs are addressed by the lab technician with the support of staff members whereas the major issues are repaired by professionally trained personnel.

GKV Computers & Solutions Pvt Limited.

CERTIFICATE OF E-WASTE DISPOSAL

This is to certify that e-waste received from **Paavai Engineering College**. **Pachal, Namakkal** has been disposed in an environment friendly manner. Date/Period of receipt of material <u>27.06.2023</u>.

We thank you for your effort in contributing towards a CLEAN & GREEN environment.

Place : Pachal Date : 27.06.2023

Certificate for E-Disposal

#82, NGN Street, New Sidhapudur, Coimbatore 641044 Phone: 0422 2525349 ; FAX : 0422 2525369;

ASUS

SZEBRONICS

PART - C: GREEN AUDIT REPORT

11. ASSESSMENT ON MATURE TREES & BIO-DIVERSITY

11.1: Campus Greenery:

CO₂

The college is completely covered with mature trees grown for more than 10 years. The total number of mature trees available in the college campus is *500 with many varieties of trees.*

S. No.	Location	Name of the Tree	Quantity
1	Entire Campus Location	Variety of Mature Trees	570

Table-12: List of Mature Trees available in the College Campus

Total No. of Mature Trees available in the college campus is **570** which contributes for reduction of **12.4 Tons of CO₂ emission/Annum**

11.2: Roof Top Solar Photovoltaic System:

- The college has installed solar PV plants with a capacity of **5.7** kW, generate and feed power to the respective LT services and are utilized by the campus load.
- All the conductive parts are properly earthed at respective buildings and ensures safety.
- Table-13 shows the Specifications of Roof Top Solar PV Plant.

Table-13: Specifications of Roof Top Solar PV Plant

Total Capacity (kWp)					5.72 kWp				
		Specific	cations of	Individua	l Panel				
Panel Ma	ke/Model				GOLDI /	GOLDIO	60F260PY2	4	
P _{max}	260 W	260 W V _{max} 30.40 V I _{max} 8.			8.57 A	Voc	38.12 V	I _{sc}	8.9 A
Location	of SPV Pla	nt				Tem	ple Tower B	uilding	
Panel Ori	entation						South		
Availabili	ty of Tracl	king					20°		
No. of Par	nels per In	verter &	Panels		22 Each				
DC Bus V	oltage				54 V				
	Inverter Sp				ecification	ns			
No. of Inverters				1					
Make and Model No.						KEVI	N (Power of	Belief)	
Power Ra	iting				8.5 kVA				
Output V	oltage and	Frequer	псу		220 V and 50 Hz				
			G	eneral Sp	ecification	ıs			
Number	Number of Inverter Earthing					1 Body Earth and 1 Neutral Earty			
Frequency of Panel Cleaning					3 Months once				
Average Units Generated per Day				Approximately 20 kWh					
Year of Installation					2018				

Energy saving from solar PV system (from the year

2023-24) is <u>5,968 kWh</u> which reduces

43.9 Tons of CO₂ Emission.

Fig.16: Components of Roof Top Solar PV Plants

11.3: Bio-gas Plant Generating Cooking Gas:

- Again to voice for Green Energy; **PCE** has implemented a Bio-gas (natural fuel) plant generating energy from food and vegetable wastes daily generated in mess and canteen.
- Production of biogas obtained from **"anaerobic digestion"** which consists in micro-organisms breaking down complex organic substances (lipids, protides, and glucides), contained in plants, sludge and by-products of animal origin.
- Biogas is primarily methane (CH₄) and carbon dioxide (CO₂) and may have small amounts of hydrogen sulphide (H₂S), moisture and siloxanes. The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen.
- Food waste generated from cooked rice, cut portions of vegetables and non-used vegetables waste. This waste is crushed by mixer grinder and slurry was prepared by adding water.
- The college has installed a biogas plant having capacity of **80 Cubic Meter** (2 Nos of Cu.M) at hostel of **Paavai College of Engineering** to process food waste and other biodegradable garbage generated on the campus. The plant capable of processing up to 680 kg of waste daily.

11.4: Recommendations to Grow Indoor Plants as Natural Air Purifier:

- Indoor plants not only do plants look good while bringing life to our living space, they also help purify the air, according to a NASA study that explains that even a small plant inside the workspace can help remove at least three household toxins (think benzene, formaldehyde, and trichloroethylene, which are carcinogenic chemicals commonly found in stagnant indoor environments).
- Here are the list of the indoor plants acts as a natural air purifier one can try with indoor area to remove toxins and improve air quality

TULSI: Generates more oxygen per day

Aloe Vera:

- Removes benzene and formaldehyde
- Eliminate harmful microorganism and absorb dust

Snake Plant:

• Removes Xylene, Benzene, Formaldehyde, Trichloroethylene toxins.

Spider Plant:

- Removes CO and Formaldehyde
- Absorbs Nicotine

Money Plant (Devil IVY):

- Best air purifying plant
- Remove benzene & Formaldehyde

Chrysanthemum:
Removes Ammonia, Xylene, Benzene & Formaldehyde

11.5: Recommendations for Miyawaki Forest:

Bosten Fern:

- High humidity application
- Remove xylene & Formaldehyde

Kimberly Queen Fern:

- Works well in carriage
- Absorb vehicular exhaust

Miyawaki is a technique (also called *Potted Seedling Method*) as that helps build dense, native, multilayered forests. The approach is supposed to ensure that plant growth is 10 times faster and the resulting plantation is 30 times denser than usual. It involves planting dozens of native species in the same area, and becomes maintenance-free after the first three years. The overall density of the forest is beneficial in lowering temperature, making soil nutritious, supporting local wildlife and sequestration of carbon.

<u> 11.6: Integrated Green Building – Future Plan for Today's Requirement:</u>

- Green concepts also realize some indirect benefits like superior air quality, excellent day lighting, health and well-being of the occupants and visitors. Implementation of Green Building Concepts ensures the energy savings to the tune of 20-30%.
- Hence the audit team recommended to the management, plan and construct the future building as per the guidelines of Green Building System (IGBC/GRIHA/GEM) to save Energy, Environment and Ecology.

11.7: Bio-Diversity in the Campus:

- Biodiversity is all the different kinds of life you'll find in one area—the variety of animals, plants, fungi, and even microorganisms like bacteria that make up our natural world.
- Each of these species and organisms work together in ecosystems, like an intricate web, to maintain balance and support life.

11.8: Recommendations to maintain Bio-Diversity:

- **Bird Sighting and Survey:** Conduct a dedicated bird sighting and identify the list of birds both residing birds and migratory birds available in the college campus
- Prepare the list of birds with their local name, scientific name, their average life time, nesting facility created by the bird and photo of the bird. Show case the result to all the stake holder and inculcate a habit of friendly environment
- Discuss with the ornithologists and facilitate the environment with more birds coming to the campus and especially migratory birds.
- **Reptile & Amphibian survey:** Similar to bird survey; conduct a survey to list the amphibians available in the campus
- Amphibian and reptile surveys are often performed as part of the Green Audit process or terrestrial survey. These surveys are effective at detecting the presence of even the most elusive species.

11.9: Formation of Green Energy Team (GET):

• It is essential and the right time to form an Energy Management Team comprising of the following members with their roles and responsibilities as shown in Table-14:

S. No	Members	Roles	Responsibilities
1.	Management Commitment	Overall Monitoring	 Encourage members to carry out activities Propose possible think tank ideas to be implemented in the college campus
2.	Head of the Institution	Team Head	Monitoring all energy related activitiesReport to the Management
3.	Heads of various Departments	Team Manager	 Assessing the energy target Monitoring the energy performance Revising the target based on performance Projects/activities/implementation
4.	Faculty members from various department	Team Members	 Identify the viable energy saving projects Prepare the detailed work plan/time frame Project guides for energy related projects
5.	Student volunteers	Energy Ambassadors	 Responsible of identified areas Floor in-charge for energy utilities Development energy saving projects Testing and Implementation

Table-14: Roles of Responsibilities of Green Energy Team (GET)

• Educate all the faculty, staff and students about the need for the energy conservation

• Energy conservation related projects are to be implemented in the college premises

- Nominate brand ambassadors for energy saving among students (for each building/floor)
- Cash incentives/awards may be given to the prominent energy achievers
- Circulate the success stories as energy conservation measures

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

12. AUDIT SUMMARY

&

CONCLUSION

I. Energy Conservation & Management – Electrical Energy:

- In a phased manner, ceiling fans must be changed from conventional fans into BLDC fans. Also change FTL into LED with adequate illumination levels
- Implement Energy Management System (EMS) to accurately measure & monitor energy flow
- Implement automatic street light controller to turn on and off based on different time in a day. Use astrological timer for better results and energy savings
- Diesel flow meter must be fitted with each DG and calculate the UPL accurately
- Prepare suitable formats for all energy consumption and regularly follow the records. At regular intervals conduct internal audits to assess the effectiveness of the practice. Make proper corrections; if it deviates from the standard operating procedure
- Regularly conduct i) Illumination study, ii) Thermal comfort study, iii) Flue gas study on DG, and Boiler, iv) Water quality assessment (for all types of water utilized) and v) Indoor and ambient air quality study.
- Regularly clean the stove burners and ensure that the flame should be in light bluish colour

II. Water Conservation & Management:

- Utilize more amount of treated water; since most of the approving agencies like AICTE, UGC etc., are now requesting to utilize the treated water
- To check the quantity of water utilized by each building by connecting digital water flow meter and optimize the water usage
- Prepare and maintain a Single Line Diagram (SLD) for water distribution network.
- Try to reduce water tapped from the ground water source since it is not environmentally friendly
- Paste water and energy saving slogans at appropriate places
- Generate your own power and water for regular activities and move towards Net Zero Energy and Net Zero Water Building
- Retrofit aerator-based water taps for good water savings. For hand washing applications, all the pipes must be fitted with aerators
- Captures almost 100 % rain water harvesting through i) Recharging pits and ii) Open well type storage pits
- Properly follow scientific method of handling chemicals/Acids/Salts and safe disposal through 3rd party
- Water treatment log must be maintained indicating the water inlet, treated and outlet water quantity
- Install **sensor-based water controller** in each Over Head Tanks and reduce the water waste and power required to operate the pump
- With the advent of smart technologies, it is possible to have centralized monitoring in real-time using Internet of Things (IoT), Geographic Information System (GIS) software, etc. as per **Jal Jeevan Mission**, Department of Drinking Water & Sanitation **Ministry of Jal Shakti**
- Awareness campus must be conducted to all the stakeholders at regular interval. Through this initiative; Painting, Photography, Slogan and Poster making contest are conducted to create consciousness among the students and faculties
III. Impart Training to Faculty and Technical Staffs:

- Energy Conservation and Management
- Environmental impact and assessment
- Fire and Safety (Operation and Handling)
- Electrical maintenance, AC, Battery Maintenance & Safety
- Emergency Preparedness
- E-Waste, Chemicals Handling & Solid Waste Management
- ✤ Training for Transport employees
- Training for Faculty and Students on Vehicle Operation
- Training for Kitchen Employees
- General Medical Camps for Employees
- Training on Stress Management and Yoga

IV. Way Forward towards Energy & Environmental Sustainability:

- Prepare an exclusive **Energy and Environment Policy** based on the energy and environment practices followed in the campus. This must reflect the i) Present energy consumption & generation, ii) Projection of energy need, iii) Commitment by the college to conserve energy (in terms of percentage), iv) Road map to achieve the commitment, v) Facilities needed to achieve the same, vi) Roles and responsibilities of all stake holders, vii) Interim and final review mechanism, viii) Corrective measures, if the results deviates from the committed value and ix) Benchmarking, Case study preparation, Knowledge sharing and rewards
- Practice appropriate ISO standards for System Management. The audit team highly recommend to follow
 i) ISO-9001 (Quality Management System), ISO-14001 (Environmental Management System) and ISO-50001 (Energy Management System)
- Working towards Net Zero Energy and Net Zero Water Campus and achieve Platinum rated Global Leadership campus (as per IGBC rating) and/or 5-star rated campus (as per GRIHA rating) and/or GEM-5 rated campus (as per ASSOCHEM GEM rating)

COMPLETION OF THE REPORT

This report is prepared as a part of the Energy, Environment and Green Audit process conducted at **M/s. PAAVAI ENGINEERING COLLEGE,** Paavai Nagar, NH-44, Pachal - 637 018, Namakkal (Dt), Tamilnadu by **RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING,** Coimbatore-641 109 Tamil Nadu, India.

CERTIFICATE

The Certification Body of TÜV SÜD South Asia Private Limited

certifies that

M/S RAMKALAM CENTRE FOR ENERGY CONSULTANCY & TRAINING No.8, VPK Garden, Velanaipatti, Coimbatore – 641 062, India

has implemented Quality Management System

in accordance with ISO 9001:2015

for the scope of

Providing Energy, Environment, Green audits to industry, Academic institutions and organizations

The certificate is valid from 2023-11-22 until 2026-11-21 Subject to successful completion of annual periodic audits The present status of this certificate can be obtained through TUV SUD website by scanning below QR code and by entering the certificate number (without spaces) on web page. Further clarifications regarding the status & scope of this certificate may be obtained by consulting the certification body at <u>info.in@tuvsud.com</u>

Certificate Registration No. 99 100 23573

Date of Initial certification: 2023-11-22

Issue Date: 2023-11-22 Rev. 00

Rahul Kale Head of Certification Body of TÜV SÜD South Asia Private Limited, **Mumbai** Member of TÜV SÜD Group

TÜV SÜD South Asia Pvt. Ltd. ● TÜV SÜD House ● Saki Naka ● Andheri (East) ● Mumbai – 400072 ● Maharashtra ● India TÜV®

Certificate No.: 9645/19

Reg No.: EA-27299

2000

National Productivity Council (National Certifying Agency) **PROVISIONAL CERTIFICATE**

This is to certify that Mr./Mrs./Ms....SIVARASU SULUR RATHINAVELU

son / daughter of Mr. PRATHINAVELU

.....has passed the National certification Examination for Energy Auditors held in September 2018, conducted on behalf of the Bureau of Energy Efficiency, Ministry of Power, Government of India. He / She is qualified as Certified Energy Manager as well as Certified Energy Auditor.

He/She shall be entitled to practice as Energy Auditor under the Energy Conservation Act 2001, subject to the fulfillment of the fulfillmen of qualifications for Accredited Energy Auditor and issuance of certificate of Accreditation by the Bureau of Energy Efficiency under the said Act.

This certificate is valid till the Bureau of Energy Efficiency issues an official certificate.

Place : Chennai, India Date : 22nd April, 2019 Digitally Signed by:K V R RAJU Mon Apr 22 16:22:42 IST 2019 Controller of Examination, NPC AIP Chennai

Essen, 2018-01-11

45141 Essen

Controller of Examination

TOV NORD

www.tuev-nord-cert.com

() CQI () IRCA

APPROVED TRAINING PARTNER

acb

ISO 14001:2015 Lead Auditor (Environmental Management Systems) Training course

it is hereby certified that

Dr. S. R. Sivarasu

has successfully completed the above mentioned course and examination

Langemarckstraße 20

08th - 12th December 2017

Coimbatore, India

Certificate No. 3521 2982 02 Delegate No. 71968

NORD CERT GmbH

Course 18125 is certified by CQI/IRCA and meets the training requirements for those seeking certification under the IRCA EMS auditor certification scheme.

TÜV NORD CERT GmbH

PAAVAI ENGINEERING COLLEGE - NAMAKKAL

CERTIFIED COURSE

PAAVAI ENGINEERING COLLEGE - NAMAKKAL

